SSC
Government Jobs Exams
Numerical Ability
Algebra
if x+1/x=5 then x^4+3x^3+5x^2+3x+1/x^4+1
Read Solution (Total 4)
-
- given,
(x+ 1/x)= 5
(x^2+ 1/x^2) =(x+ 1/x)^2 - 2*x*1/x = 5^2-2 = 23
x^4+3x^3+5x^2+3x+1/x^4+1
dividing Nr & Dr by x^2 we get
(x^2 + 3x + 5 + 3/x + 1/x^2) / (x^2+ 1/x^2)
=[(x^2+ 1/x^2) + 5 + 3(x+ 1/x)] / (x^2+ 1/x^2)
= (23 + 5 + 3*5)/23
= 43/23 - 10 years agoHelpfull: Yes(8) No(1)
- x + 1/x = 5
x^2 + 1/x^2 = 5^2 - 2 =23
x^4+3x^3+5x^2+3x+1/x^4+1
Dividing each term by x^2
(x^2 + 3x + 5 + 3/x + 1/x^2) /(x^2 + 1/x^2)
= (23 + 3*5 +5 )/23
=43/23 - 10 years agoHelpfull: Yes(4) No(0)
- divide Numerator and denominator by x^2......
tricky one but solved - 10 years agoHelpfull: Yes(1) No(1)
- as (x+1)/x=5 so x=1/4...
so put the value of x in the equation and get the result. - 10 years agoHelpfull: Yes(1) No(2)
SSC Other Question