Accenture
Company
Numerical Ability
Algebra
The sum of a number and its square is 1406. What is the number?
1) 38
2) 39
3) 37
4) 29
5) None of these
Read Solution (Total 35)
-
- x + x^2 = 1406
x^2+x-1406 = 0
x = -1+-sqrt(1-4*1406)/2
x = -1+-75/2
x=-38 or x=37
Ans : 3)37 - 10 years agoHelpfull: Yes(27) No(3)
- 7*7=49
so 9+7=6 so solve this one to get the answer
so c is the answer - 10 years agoHelpfull: Yes(19) No(3)
- 3) 37
let no. be x then
x + x^2 = 1406
=> x^2 + x -1406 = 0
=> (x+38)(x-37) = 0
=> x = 37, -38 - 10 years agoHelpfull: Yes(11) No(1)
- 37+(37)2=1406.
ans :3
- 10 years agoHelpfull: Yes(5) No(0)
- we will check using the unit digt.
7*7= 9
9+7= 6
ans- 3 - 10 years agoHelpfull: Yes(5) No(0)
- X^2+X=1406
X(X+1)=1406
37*38=1406 - 10 years agoHelpfull: Yes(2) No(0)
- last digit of 37^2=9 add 37=last digit 6
- 10 years agoHelpfull: Yes(1) No(0)
- ans is 37
let x is the no
so x+x^2=1406
37+37^2
=37(37+1)
=37*38
=1406 - 10 years agoHelpfull: Yes(1) No(0)
- x+x^2=1406 solving this eqn we get x=37.
- 10 years agoHelpfull: Yes(1) No(0)
- x+x^2=1406
last digit 7^2=9 & 9+7=6
so 37 - 10 years agoHelpfull: Yes(1) No(0)
- 37 satisfies the problem
- 10 years agoHelpfull: Yes(1) No(0)
- 5
no one match - 10 years agoHelpfull: Yes(1) No(0)
- x^2+x=1406
x+1=1406/x
put the option and check
option 3 will satisfy - 10 years agoHelpfull: Yes(1) No(0)
- Ans is 37.
- 10 years agoHelpfull: Yes(1) No(0)
- x+x^2=1406
x+x^2-1406=0
(x+38)(x-38)=0
x= -38 and 37
ans= 37 i.e. option 3 - 10 years agoHelpfull: Yes(0) No(0)
- Better way,take x common,x(x+1),now check ,38*39,not possible,as 8*9 leaves remainder 2,similarly only 8*7 does,therefore multiply it and check it
- 10 years agoHelpfull: Yes(0) No(0)
- x^2+x=1406
x^2+x-1406=0
x^2+38x-37x-1406=0
x(x+38)-37(x+38)=0
x=-38 ,x=37
so ans is option 3 38X37=1406 - 10 years agoHelpfull: Yes(0) No(0)
- 1406
- 10 years agoHelpfull: Yes(0) No(0)
- Answer is 37.
Reason:
last digit of 1406 is 6, which is not possible with 38(38^2 will have last digit 4 + 38 which gives last digit 2) or 39 or 29.
Only 37^2+37 gives 9+7=6 as last digit - 10 years agoHelpfull: Yes(0) No(0)
- squar digit 9 + 7=6 , so 37
- 10 years agoHelpfull: Yes(0) No(0)
- Ans 3) 37
37*37+37=1406 - 10 years agoHelpfull: Yes(0) No(0)
- ans:3
x2+x-1406=0;
x=37 - 10 years agoHelpfull: Yes(0) No(1)
- short a
1406 last digit 6
6 should be number's square's last digit + number
possible with only number having last digit as 7
we have that - 10 years agoHelpfull: Yes(0) No(0)
- answer is 37, by solving using quadratic equation we get the answer as 37
- 10 years agoHelpfull: Yes(0) No(0)
- opt 5)is the ans
- 10 years agoHelpfull: Yes(0) No(0)
- 37...37satisfies the question
- 10 years agoHelpfull: Yes(0) No(0)
- 7^2+7 gets last digit as 6 so ans is 37
- 10 years agoHelpfull: Yes(0) No(0)
- 3) 37
let no. be x then
x + x^2 = 1406
=> x^2 + x -1406 = 0
=> (x+38)(x-37) = 0
=> x = 37, -38
- 10 years agoHelpfull: Yes(0) No(0)
- ans: (3) 37
let no is =x
acoording to qustion x+x^2= 1406
=> x^2+x-1406=0
=> x^2+38x-37x-1406=0
=> x(x+38)-37(x-37)=0
=> (x-37) (x+38)
x=37, x= -38
datsy x=37 - 9 years agoHelpfull: Yes(0) No(0)
- Sum of a number + its square is :
Let assume the number x ->
x + x^2 = 1406
x^2 +x -1406 = 0
x^2 + 38 x - 37 x +1406 = 0
x(x+38) - 37(x+38) = 0
(x-37)(x+38) = 0
x =37 , x = -38
so ,
Ans : option (3) i.e 37
- 9 years agoHelpfull: Yes(0) No(0)
- x + x^2 = 1406
=> x^2 + x -1406 = 0
=> (x+38)(x-37) = 0
=> x = 37, -38
number has to be +ve . so its 37 - 9 years agoHelpfull: Yes(0) No(0)
- better way is to just take x common
x(x+1)
and check unit place by checking multiplication of unit places
for 37
7*8 this only giving unit place as 6. - 9 years agoHelpfull: Yes(0) No(0)
- 37square +37=1406
- 6 years agoHelpfull: Yes(0) No(0)
- (37)^2+37=1406
- 6 years agoHelpfull: Yes(0) No(0)
- 5 it does not satisfy any of the above mentioned option.
- 6 years agoHelpfull: Yes(0) No(0)
Accenture Other Question