Elitmus
Exam
Category
total no of factors of 16!...????
Read Solution (Total 6)
-
- ans: 5376
16! = 16*15*14*.......*3*2*1
16! = 2^15 * 3^6 * 5^3 * 7^2 * 11^1 * 13^1
total number of factors = (15+1)*(6+1)*(3+1)*(2+1)*(1+1)*(1+1) = 5376
- 10 years agoHelpfull: Yes(29) No(4)
- 16! = 16*15*.......*4*3*2*1
If we factorise every number we get :-
16! = 2^16 * 3^6 * 5^3 * 7^2 * 13^1 * 11^1
Hence, according to the formula, total number of factors of 16! is :-
(16+1)*(6+1)*(3+1)*(2+1)*(1+1)*(1+1)
= 17*7*4*3*2*2
= 5712 (Ans) - 10 years agoHelpfull: Yes(9) No(8)
- 16! = 16*15*.......*4*3*2*1
If we factorise every number we get :-
16! = 2^15 * 3^6 * 5^3 * 7^2 * 13^1 * 11^1
Hence, according to the formula, total number of factors of 16! is :-
(15+1)*(6+1)*(3+1)*(2+1)*(1+1)*(1+1)
= 17*7*4*3*2*2
= 5376 (Ans) - 10 years agoHelpfull: Yes(3) No(0)
- 2^15*3^6*5^3*7^2*11^1*13^1= 16!
now putting the formula:
(15+1)*(6+1)*(3+1)*(2+1)*(1+1)*(1+1)=5376 - 10 years agoHelpfull: Yes(1) No(2)
- 2^4=16
4+1=5
1,2,4,8&16 can only divide 16 - 10 years agoHelpfull: Yes(0) No(7)
- 16=2^4
4+1=5
- 10 years agoHelpfull: Yes(0) No(6)
Elitmus Other Question