TCS
Company
Numerical Ability
Number System
How many integers satisfy the equation
(x^2-x-1)^(x+2)=1
a)none
b)3
c)2
d)4
Read Solution (Total 28)
-
- D is the answer.
Try and error question.
Equ satisfy by x=-2,2,0,-1 - 10 years agoHelpfull: Yes(28) No(2)
- d is correct (1,-1,2,0)
- 10 years agoHelpfull: Yes(6) No(8)
- take log both side
(x+2)log(x^2-x-1)=log1=0
case1
x+2=0
x=-2
or
case 2
log(x^2-x-1)=0
taking antilog
x^2-x-1=10^0
x^2-x-1=1
x^2-x-2=0
x=2,-1;
hence ans is 3; - 10 years agoHelpfull: Yes(3) No(1)
- ans-4
-2,-1,0,2 - 10 years agoHelpfull: Yes(2) No(2)
- ans b)
the values for x are -1, -2, 2
0 is incorrect, because putting x=0 in (x^2 - x - 1) will make it -ve and the range of (x^2 - x - 1) should be positive (here). - 10 years agoHelpfull: Yes(2) No(9)
- x may be -1, 2, -2 or 0
if x=-1: ((-1)^2 +1 -1)^(-1+2)= 1^1 =1
if x=2: ((2)^2+2-1)^(-2+2)=5^0=1
etc.....
Therefore 4 integers are possible.
ans:d - 10 years agoHelpfull: Yes(2) No(0)
- ans:c
(2^2-2-1)^(2+2)
(4-3)^(4)
1^4=1 - 10 years agoHelpfull: Yes(2) No(1)
- put x=0 we get 1=1 so x=1 is correct and also
applying log on both side
(x+2)log(x^2-x-1)=log(1)=0
i.e.,x=-2 or
log(x^2-x-1)=0 => x^2-x-1=1 =>x^2-x=2 => x(x-1)=2 => x=2,-1.
therefore ans is 4 integers (-2,-1,0,2) - 9 years agoHelpfull: Yes(2) No(0)
- now there are five integers -2 -1 0 1 2
so none (a). - 10 years agoHelpfull: Yes(1) No(5)
- 3 cases arises.
1.x^2-x-1=1 ============>-1,2
2.x+2=0 ===============>-2
3.x^2-x-1=-1 and x+2=2 => 0
hence 4 solutions. - 10 years agoHelpfull: Yes(1) No(0)
- 3 integral values
- 10 years agoHelpfull: Yes(1) No(0)
- a. 3.--》 -1, 0, 2.
- 10 years agoHelpfull: Yes(1) No(0)
- ans:d)4
-1,0,2,-2 - 10 years agoHelpfull: Yes(0) No(0)
- ans is d
(-1,-2,0,2) - 10 years agoHelpfull: Yes(0) No(0)
- ans:c (0,2)
- 10 years agoHelpfull: Yes(0) No(0)
- D is the corect answer for this
- 10 years agoHelpfull: Yes(0) No(0)
- (x^2-x-1) must be equal to 1
by solving we get 2 and -1 as roots so ans is 2 - 10 years agoHelpfull: Yes(0) No(0)
- answer is d)4
x=0,2,-2,-1 - 10 years agoHelpfull: Yes(0) No(2)
- ans 2,,,,,(x^2-x-1)^(x+2)=1 base should be 1 or -1 take x^2-x-1 =1 or -1,,then x^2-x=0, x=0 ,x=1
- 10 years agoHelpfull: Yes(0) No(0)
- the ans is :none
as the number 1 alone satisfies the equation remaing integers fail to satisfy. so ans is none
- 10 years agoHelpfull: Yes(0) No(1)
- answer is 4
- 10 years agoHelpfull: Yes(0) No(0)
- ans :- c
(2^2-2-1)^(2+2) =1
(4-2-1)^4 =1
(4-3)^4 =1
(1)^4 =1
- 10 years agoHelpfull: Yes(0) No(0)
- ans b)
the values for which x satisfies are -1,2,2.
Althogh it satisfies 0,but it is not a solution because apply log on both sides
(x+2)log(x^2-x-1)=0
here when x=0,log (-1) which is not defined. - 9 years agoHelpfull: Yes(0) No(0)
- C is the answer
(x^2-x-1)^(x+2)=1
By solving this we get x=-1 and x=3
son the range is -1 to 3 but -1 and 3 only results in value = 1 , others values like 0, 1 and 2 results in fractional values -1/2, -1/3 and -4. Thus the answer is c) 2. - 9 years agoHelpfull: Yes(0) No(0)
- C x=-1,-2
- 9 years agoHelpfull: Yes(0) No(0)
- check it by integer
- 9 years agoHelpfull: Yes(0) No(0)
- 3 cases gives solutions.
1. x^2-x-1=1 =>-1,2
2. x+2=0 =>-2
3. x^2-x-1=-1 and x+2=2 => 0
hence 4 solutions. - 9 years agoHelpfull: Yes(0) No(0)
- we need to satisfy (x^2-x-1)^(x+2)=1 (x^2-x-1) must b 1
satisfied values are::x=2,x=0
-> 2 values
ans:c
- 8 years agoHelpfull: Yes(0) No(0)
TCS Other Question