TCS
Company
Numerical Ability
Number System
30^72^87 divided by 11 gives remainder?
Read Solution (Total 8)
-
- can be solved only knowing remainder theorem
given%11= (30%11)^72^87=8^72^87
(8^72^87)=(64%11)^36^87=9^36^87
9^36^87=(81%11)^18^87=4^18^87
(16%11)^9^87=5^9^87
when 5 comes it will recur whatever may b the power - 10 years agoHelpfull: Yes(30) No(2)
- unit digit of 72^87 = 8
so,72^87 = (10k + 8)
30^(10k+8)/11
= 3^(10k+8)*10^(10k+8)/11
= 3^10k * 3^8 * 10^(10k+8)/11
= (3^5)^2k * 3^5*3^3 * 10^(10k+8)/11
= (11*22+1)^2k *(11*22+1)*(11*2+5)*(11*1-1)^(10k+8)/ 11
=> rem = 1^2k * 1 * 5 *(-1)^(10k+8) = 5 - 10 years agoHelpfull: Yes(28) No(4)
- (22+2^3)^8%11=5
- 10 years agoHelpfull: Yes(4) No(1)
- 30^72^87 /11
so by the form a^p-1/p the rem is always 1.
so we can say that 30^10 or 8^10 the rem=1;
the unit digit of 72^87 is 8 by cyclicity of unit digits.
so 72^87 =10L+8
30^(10L+8)/11
=> (30^10)^L *30^8/11
=> 1^L*30^8/11
=> 30^8/11
=> 8^8/11
=> 2^24/11
=> (2^5)4*2^4/11
=> 16/11= 5
so 5 is rem Ans - 10 years agoHelpfull: Yes(1) No(4)
- 1st-rem(30/11)=8
2nd-8^72^87/10
3rd-euler(11)=10
4th-rem( (72*87)/10)=4
5th-8^4/11=2^12/11
6th-rem(12/10)=2
7th-rem(4/11)=4
ans=4
please response if my solution is right or wrong.
- 10 years agoHelpfull: Yes(1) No(4)
- 72, unit digit is 2..now 2^87=last digit will be 8...30=22+8 ,,22 s divisible by 11...so 8^8=2^24
now 2^24 mod 11 have to conclude..
so
2^2 mod 11=4
2^4mod 11=(2^2)^2 mod 11=4^2mod 11=5
2^8 mod 11=(2^4)^2 mod 11=5^2mod11=3
2^16 mod 11=(2^8)^2 mod 11=3^2 mod 11=9
2^24 mod 11=(2^8x2^16)mod 11=3x9 mod 11=5 remainder as 27/11=5 remainder... - 10 years agoHelpfull: Yes(1) No(0)
- can we do like this...
30^6254/11= (33-3)^6254/11 = (-3)^6254/11
(-3*-3)^3127/11 =(9)^3127/11 =((9^3)^1042 *3)/11
(632+1)^1042/11 *3/11= ans 3 - 10 years agoHelpfull: Yes(0) No(2)
- what is remainder therom
- 8 years agoHelpfull: Yes(0) No(0)
TCS Other Question