SSC
Government Jobs Exams
Numerical Ability
Number System
If the sum of the squares of 3 consecutive natural numbers is 2030,Find these numbers?
Read Solution (Total 7)
-
- if numbers are x, x-1 , x+1
(x-1)^2+(x)^2+(x+1)^2=2030
3x^2+2= 2030
3x^2= 2028
x^2 = 676
x= 26
so numbers are 26,25,27 .. 25,26,27 in order. - 12 years agoHelpfull: Yes(7) No(1)
- 25, 26, 27
25^2 + 26^2 + 27^2
625 +676 +729 =2030 - 12 years agoHelpfull: Yes(6) No(4)
- (x-1)square*(x)square*(x+1)square=2030 clearly xnot equql to 1.
solving get 25,26and27
- 12 years agoHelpfull: Yes(1) No(3)
- a^2+(a+1)^2+(a+2)^2=2030
a^2+2a-675=0
(a+27)(a-25)=0
a=25,-27 - 12 years agoHelpfull: Yes(1) No(4)
- if numbers are x, x-1 , x+1
(x-1)^2+(x)^2+(x+1)^2=2030
3x^2+2= 2030
3x^2= 2028
x^2 = 676
x= 26
so numbers are 26,25,27 .. 25,26,27 in order. - 12 years agoHelpfull: Yes(1) No(2)
- (a-1)^2+a^2+(a+1)^2=2030
a^2-2a+1+a^2+a^2+2a+1=2030
3a^2+2=2030
3a^2=2028
a^2=676
a = 26
Numbers, 25,26,27 - 12 years agoHelpfull: Yes(1) No(1)
- x^2+(x+1)^2+(x+2)^2=2030
x^2+2x-675=0
(x+27)(x-25)
ans:25
- 9 years agoHelpfull: Yes(0) No(0)
SSC Other Question