TCS
Company
Numerical Ability
Number System
The difference between two no is 9 and the product of the two is 14. What is the square of their sum?
Read Solution (Total 9)
-
- x-y= 9
xy= 14
(x+y)^2= (x-y)^2+4xy= 81+ 4*14=81+ 56= 137
- 9 years agoHelpfull: Yes(11) No(1)
- given,
a-b=9,ab=14
as we know,
(a-b)^2=(a+b)^2-4ab
9^2=(a+b)^2-4*14
so, (a+b)^2=137 - 9 years agoHelpfull: Yes(3) No(0)
x-y=9
xy=14
81=x^2+y^2-28
109=x^2+y^2
So,(x+y)^2=x^2+y^2+2xy
109+28=137- 9 years agoHelpfull: Yes(1) No(0)
- x-y = 9
(x-y)^2 = 9^2
x^2 + y^2- 2.x.y = 81
x^2 + y^2 = 81 + 2.14
x^2 + y^2 = 81+28
x^2 + y^2= 109 - 9 years agoHelpfull: Yes(0) No(1)
- keep it simple :)
given=> a-b=9 , ab=14
(a-b)^2=9*9=81
(a^2 + b^2 -2ab)+2ab=a^2 +b^2=81+(2*14)=109
but
we need to find (a+b)^2
=> (a^2+b^2)+2ab=109+(2*14)=109+28=136
SO 136 is d answer..!! :)
- 9 years agoHelpfull: Yes(0) No(1)
- 137 is the correct answer
- 9 years agoHelpfull: Yes(0) No(0)
- sorry 137 is the correct answer
(x+y)^2= 109+28
= 137 - 9 years agoHelpfull: Yes(0) No(0)
- given
a-b=9
ab=14
(a+b)^2=(a-b)^2+4ab
- 9 years agoHelpfull: Yes(0) No(0)
- given
a-b=9
ab=14
(a+b)^2=(a-b)^2+4ab
=9^2+4*14
=81+56
=137 - 9 years agoHelpfull: Yes(0) No(0)
TCS Other Question