Elitmus
Exam
Numerical Ability
Number System
find remainder of (9^1+9^2+.........+9^n)/6
n is multiple of 11.
a) 0
b) 5
c) 3
d) can not be determine
Read Solution (Total 15)
-
- Correction in my previous solution.
If we take the even multiple of 11, then remainder will be zero.
Therefore answer is cannot be determine. - 8 years agoHelpfull: Yes(26) No(3)
- 9/6 remainder is 3
9^2/6 remainder is 3
9^3/6 remainder is 3
9 to the power of any number when divided by 6 ,the remainder will always be 3.
Now, ( 3+3+3 ......11 times)/6 =(3*11)/6; therefore the remainder will be 3. - 8 years agoHelpfull: Yes(18) No(4)
- Answer will be 3....
All the 9^i values end with 9 or 1.. All are odd values...
So (9^1+9^2+.........+9^n) will be multiple of 3 and multiple of 2 (so multiple of 6) if n is even..
if n is odd sum will be odd , but multiple of 9 , simply multiple of 3....
So , it will give remainder 3.... - 8 years agoHelpfull: Yes(15) No(3)
- ans is cannot be determined
9/6 always remainder 3
(9^2)/6 remainder 3
therefore if n = 11 --- sum = (11*3)/6, remainder = 3
if n = 22 sum = (22*3)/6, remainder = 0
- 8 years agoHelpfull: Yes(10) No(0)
- cannot be determined as we have both options 0 and 3 possible as remainder
- 8 years agoHelpfull: Yes(6) No(0)
- rem[(9^1 + 9^2 + 9^3 +....9^n)/6]=rem[(3^1 + 3^2 + 3^3 +....3^n)/6]
1) now if n=11
rem[3*11/6]=3
2) if n=22
rem[3*22/6]=0
so we r getting different values of remainder.. So correct option is d - 8 years agoHelpfull: Yes(4) No(1)
- Answer depend upon n if n is odd then answer will be 3 if n is even answer will be 0
- 7 years agoHelpfull: Yes(3) No(0)
- it can be rewritten as 9^1/6 +9^2/6+9^3/6 ....
now n can be
a) even ..say n= 22
so
the rule follows 9^1/6=9/6=3/6 i.e the remainder of remainder.
so 9^22/6= 9x9x9x9...22 times/6 or 3x3x3...22 times/6 or 3^22/6 which is ((3^4)^5 x 3^2)/6 which gives unit digit as zero
following same terms
n = odd say 11
unit digit will be 3
so answer is 0 or 3 depending on n - 7 years agoHelpfull: Yes(2) No(0)
- Answer will be 5
(9^1+9^2+........+9^11)/6=((3)^2+(3)^4+...........+(3)^22)/6=3((3)^1+(3)^3+...........+(3)^21)/3*2=(3)^1+(3)^3+...........+(3)^21)/2=now last digit will be zero thats why reminder 0 after divided by 2.
- 8 years agoHelpfull: Yes(1) No(8)
- 9*11=99
99/6=== reminder is 3 - 8 years agoHelpfull: Yes(0) No(9)
- a 0 last digit is always 9 so
- 8 years agoHelpfull: Yes(0) No(2)
- ANS is 3
9*(1+2+3+11n)/6=9*(11n(11n+1)/2)/6 (suppose it is 11)
9*11(11+1)/6*2=3(ans)
9*22(22+1)/6*2=3(ans) - 8 years agoHelpfull: Yes(0) No(5)
- correct answer is 3
here n=11
if we divide 9/6 we get remainder =3
'' 9^2 /6 =3
.....
..
...
.....
go to last 9^11/6 =3.
so in last u get remainder=3
- 8 years agoHelpfull: Yes(0) No(5)
- 9^1--last digit=9
9^2--last digit=1
9^3--last digit=9
9^4--last digit=1
9^5--last digit=9
9^6--last digit=1
9^7--last digit=9
9^8--last digit=1
9^9--last digit=9
9^10--last digit=1
9^1--11last digit=9
----------------------------
sum of last digit=9
9/6 leaves remainder 3..
so 3 is answer
9^2--last digit=1 - 7 years agoHelpfull: Yes(0) No(1)
- (91 +92 +...+9n )mod 6 = (31+32+...+3n)mod 6
=(3+9+9*3+.....+3n)mod 6
every term has remainder 3
so n=11
(3*11)mod 6=33 mod 6=3 - 7 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question