Elitmus
Exam
Numerical Ability
G1,G2,G3,G4 are in G.P, where G=G1 and R is the common ration and log4(G1)+log4 G2 +log4 G3 +.... = 2500, then find the possible pair of (G,R).
A.
(G,R)=[ 21250/R(3/2) , R]
B.
(G,R)=[ 21250/R(1/2) , R]
C.
(G,R)=[ 21250/R(3/4) , R]
D.
(G,R)=[ 21250/R(3/7) , R]
Read Solution (Total 2)
-
ques is log4(G1)+log4 G2 +log4 G3 +log4 G4 =2500
log4(g.gr.gr^2.gr^3)=2500
g^4.r^6=4^2500
g2.r^6=2^2500
g=2^1250/r^3/2
ans is A) (G,R)=[ 21250/R(3/2) , R]
- 10 years agoHelpfull: Yes(7) No(1)
- log base4(g.gr.gr^2.gr^3)=2500
4^2500=g^4.r^6
g^2.r^3=4^1250,dividing power by 2
g.r^(3/2)=4^625, same as above
now see options only a has r^(3/2) - 10 years agoHelpfull: Yes(4) No(0)
Elitmus Other Question