If x2 + y2 + z2 - xy - yz - zx < 0 then which one statement is correct.
OPtion
1) x = y = z
2) x > y > z
3) x < y < z
4) x ≠ y = z
5) x = y ≠ z
6) x ≠ y ≠ z
7) x, y, z have negative values
8) any one of x, y, z is negative
9) any two of x, y, z are negative
10) Not possible
Solution
x2 + y2 + z2 – xy - yz – zx < 0
=> 2x2 + 2y2 + 2z2 – 2xy - 2yz – 2zx < 0
=> x2 + y2 - 2xy + y2 + z2 - 2yz + z2 + x2 - 2zx < 0
=> (x – y)2 + (y – z)2 + (z – x)2 < 0
(x – y)2 + (y – z)2 + (z – x)2 ,
This expression is the sum of three perfect square numbers and it is not possible to make this expression less than 0.