If x^2 + y^2 + z^2 - xy - yz - zx < 0 then which one statement is correct.
OPtion
1) x = y = z
2) x > y > z
3) x < y < z
4) x ≠ y = z
5) x = y ≠ z
6) x ≠ y ≠ z
7) x, y, z have negative values
8) any one of x, y, z is negative
9) any two of x, y, z are negative
10) Not possible
Solution
x^2 + y^2 + z^2 xy - yz zx < 0
2x^2 + 2y^2 + 2z^2 2xy - 2yz 2zx < 0
x^2 + y^2 - 2xy + y^2 + z^2 - 2yz + z^2 + x^2 - 2zx < 0
(x y)^2 + (y z)^2 + (z x)^2 < 0
(x y)^2 + (y z)^2 + (z x)^2 ,
This expression is the sum of three perfect square numbers and it is not possible to make this expression less than 0.